Sparse Hessian and Jacobian computations
It is to be noted that by default the Jacobian and Hessian are sparse.
using ADNLPModels, NLPModels
f(x) = (x[1] - 1)^2
T = Float64
x0 = T[-1.2; 1.0]
lvar, uvar = zeros(T, 2), ones(T, 2) # must be of same type than `x0`
lcon, ucon = -T[0.5], T[0.5]
c!(cx, x) = begin
cx[1] = x[2]
return cx
end
nlp = ADNLPModel!(f, x0, lvar, uvar, c!, lcon, ucon, backend = :optimized)
ADNLPModel - Model with automatic differentiation backend ADModelBackend{
ReverseDiffADGradient,
ReverseDiffADHvprod,
ForwardDiffADJprod,
ReverseDiffADJtprod,
SparseADJacobian,
SparseReverseADHessian,
ForwardDiffADGHjvprod,
}
Problem name: Generic
All variables: ████████████████████ 2 All constraints: ████████████████████ 1
free: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 free: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
lower: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 lower: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
upper: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 upper: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
low/upp: ████████████████████ 2 low/upp: ████████████████████ 1
fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
nnzh: ( 66.67% sparsity) 1 linear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
nonlinear: ████████████████████ 1
nnzj: ( 50.00% sparsity) 1
Counters:
obj: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 grad: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 cons: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
cons_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 cons_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jcon: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
jgrad: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jac: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jac_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
jac_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jprod_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
jprod_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jtprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jtprod_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
jtprod_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 hess: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 hprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
jhess: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jhprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
(get_nnzj(nlp), get_nnzh(nlp)) # number of nonzeros elements in the Jacobian and Hessian
(1, 1)
x = rand(T, 2)
J = jac(nlp, x)
1×2 SparseArrays.SparseMatrixCSC{Float64, Int64} with 1 stored entry:
⋅ 1.0
x = rand(T, 2)
H = hess(nlp, x)
2×2 LinearAlgebra.Symmetric{Float64, SparseArrays.SparseMatrixCSC{Float64, Int64}}:
2.0 ⋅
⋅ ⋅
The available backends for sparse derivatives (SparseADJacobian
, SparseADHessian
and SparseReverseADHessian
) have keyword arguments detector
and coloring_algorithm
to specify the sparsity pattern detector and the coloring algorithm, respectively.
- A
detector
must be of typeADTypes.AbstractSparsityDetector
.
The default detector is TracerSparsityDetector()
from the package SparseConnectivityTracer.jl
. Prior to version 0.8.0, the default detector was SymbolicSparsityDetector()
from Symbolics.jl
.
- A
coloring_algorithm
must be of typeSparseMatrixColorings.GreedyColoringAlgorithm
.
The default algorithm is GreedyColoringAlgorithm{:direct}()
for SparseADJacobian
and SparseADHessian
, while it is GreedyColoringAlgorithm{:substitution}()
for SparseReverseADHessian
. These algorithms are available in the package SparseMatrixColorings.jl
.
The GreedyColoringAlgorithm{:direct}()
performs column coloring for Jacobians and star coloring for Hessians. In contrast, GreedyColoringAlgorithm{:substitution}()
applies acyclic coloring for Hessians. The :substitution
coloring mode usually finds fewer colors than the :direct
mode and thus fewer directional derivatives are needed to recover all non-zeros of the sparse Hessian. However, it requires storing the compressed sparse Hessian, while :direct
coloring only stores one column of the compressed Hessian.
The :direct
coloring mode is numerically more stable and may be preferable for highly ill-conditioned Hessian as it doesn't require solving triangular systems to compute the non-zeros from the compressed Hessian.
If the sparsity pattern of the Jacobian of the constraint or the Hessian of the Lagrangian is available, you can directly provide them.
using SparseArrays, ADNLPModels, NLPModels
nvar = 10
ncon = 5
f(x) = sum((x[i] - i)^2 for i = 1:nvar) + x[nvar] * sum(x[j] for j = 1:nvar-1)
H = SparseMatrixCSC{Bool, Int64}(
[ 1 0 0 0 0 0 0 0 0 1 ;
0 1 0 0 0 0 0 0 0 1 ;
0 0 1 0 0 0 0 0 0 1 ;
0 0 0 1 0 0 0 0 0 1 ;
0 0 0 0 1 0 0 0 0 1 ;
0 0 0 0 0 1 0 0 0 1 ;
0 0 0 0 0 0 1 0 0 1 ;
0 0 0 0 0 0 0 1 0 1 ;
0 0 0 0 0 0 0 0 1 1 ;
1 1 1 1 1 1 1 1 1 1 ]
)
function c!(cx, x)
cx[1] = x[1] + x[2]
cx[2] = x[1] + x[2] + x[3]
cx[3] = x[2] + x[3] + x[4]
cx[4] = x[3] + x[4] + x[5]
cx[5] = x[4] + x[5]
return cx
end
J = SparseMatrixCSC{Bool, Int64}(
[ 1 1 0 0 0 ;
1 1 1 0 0 ;
0 1 1 1 0 ;
0 0 1 1 1 ;
0 0 0 1 1 ]
)
T = Float64
x0 = -ones(T, nvar)
lvar = zeros(T, nvar)
uvar = 2 * ones(T, nvar)
lcon = -0.5 * ones(T, ncon)
ucon = 0.5 * ones(T, ncon)
J_backend = ADNLPModels.SparseADJacobian(nvar, f, ncon, c!, J)
H_backend = ADNLPModels.SparseADHessian(nvar, f, ncon, c!, H)
nlp = ADNLPModel!(f, x0, lvar, uvar, c!, lcon, ucon, jacobian_backend=J_backend, hessian_backend=H_backend)
ADNLPModel - Model with automatic differentiation backend ADModelBackend{
ForwardDiffADGradient,
ForwardDiffADHvprod,
ForwardDiffADJprod,
ForwardDiffADJtprod,
SparseADJacobian,
SparseADHessian,
ForwardDiffADGHjvprod,
}
Problem name: Generic
All variables: ████████████████████ 10 All constraints: ████████████████████ 5
free: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 free: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
lower: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 lower: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
upper: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 upper: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
low/upp: ████████████████████ 10 low/upp: ████████████████████ 5
fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
nnzh: ( 65.45% sparsity) 19 linear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
nonlinear: ████████████████████ 5
nnzj: ( 74.00% sparsity) 13
Counters:
obj: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 grad: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 cons: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
cons_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 cons_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jcon: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
jgrad: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jac: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jac_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
jac_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jprod_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
jprod_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jtprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jtprod_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
jtprod_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 hess: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 hprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
jhess: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jhprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
The package SparseConnectivityTracer.jl
is used to compute the sparsity pattern of Jacobians and Hessians. The evaluation of the number of directional derivatives and the seeds required to compute compressed Jacobians and Hessians is performed using SparseMatrixColorings.jl
. As of release v0.8.1, it has replaced ColPack.jl
. We acknowledge Guillaume Dalle (@gdalle), Adrian Hill (@adrhill), Alexis Montoison (@amontoison), and Michel Schanen (@michel2323) for the development of these packages.