Custom workspaces

Custom workspaces for the Poisson equation with halo regions

Introduction

The Poisson equation is a fundamental partial differential equation (PDE) in physics and mathematics, modeling phenomena like temperature distribution and incompressible fluid flow. In a 2D Cartesian domain, it can be expressed as:

\[\nabla^2 u(x, y) = f(x, y)\]

Here, $u(x, y)$ is the potential function and $f(x, y)$ represents the source term within the domain.

This page explains how to use a Krylov method to solve the Poisson equation over a rectangular region with specified boundary conditions, detailing the use of a Laplacian operator within a data structure that incorporates halo regions.

Finite difference discretization

We solve the Poisson equation numerically by discretizing the 2D domain using a finite difference method. For a square domain $[0, L] \times [0, L]$, divided into a grid of points, each point approximates the solution $u$ at that position.

With grid spacings $h_x = \frac{L}{N_x + 1}$ and $h_y = \frac{L}{N_y + 1}$, let $u_{i,j}$ denote the approximation of $u(x_i, y_j)$ at grid point $(x_i, y_j) = (ih, jh)$. The 2D Laplacian can be approximated at each interior grid point $(i, j)$ by combining the following central difference formulas:

\[\frac{\partial^2 u}{\partial x^2} \approx \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2}\]

\[\frac{\partial^2 u}{\partial y^2} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^2}\]

This yields the discrete Poisson equation:

\[\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^2} = f_{i,j}\]

resulting in a system of linear equations for the $N^2$ unknowns $u_{i,j}$ at each interior grid point.

Boundary conditions

Boundary conditions complete the system. Common choices are:

  • Dirichlet: Specifies values of $u$ on the boundary.
  • Neumann: Specifies the normal derivative (or flux) of $u$ on the boundary.

Implementing halo regions with HaloVector

In parallel computing, halo regions (or ghost cells) around the grid store boundary values from neighboring subdomains, allowing independent stencil computation near boundaries. This setup streamlines boundary management in distributed environments.

For specialized applications, Krylov.jl’s internal storage expects an AbstractVector, which can benefit from a structured data layout. A HaloVector provides this structure, using halo regions to enable finite difference stencils without boundary condition checks. The OffsetArray type from OffsetArrays.jl facilitates custom indexing, making it ideal for grids with halo regions. By embedding an OffsetArray within HaloVector, we achieve seamless grid alignment, allowing "if-less" stencil application.

This setup reduces boundary condition checks in the core loop, yielding clearer and faster code. The flexible design of HaloVector supports 1D, 2D, or 3D configurations, adapting easily to different grid layouts.

Definition and usage of the HaloVector

HaloVector is a specialized vector for grid-based computations, especially finite difference methods with halo regions. It is parameterized by:

  • FC: The element type of the vector.
  • D: The data array type, which uses OffsetArray to enable custom indexing.
using OffsetArrays

struct HaloVector{FC, D} <: AbstractVector{FC}
    data::D

    function HaloVector(data::D) where {D}
        FC = eltype(data)
        return new{FC, D}(data)
    end
end

function Base.similar(v::HaloVector)
    data = similar(v.data)
    return HaloVector(data)
end

function Base.length(v::HaloVector)
    m, n = size(v.data)
    l = (m - 2) * (n - 2)
    return l
end

function Base.size(v::HaloVector)
    l = length(v)
    return (l,)
end

function Base.getindex(v::HaloVector, idx)
    m, n = size(v.data)
    row = div(idx - 1, n - 2) + 1
    col = mod(idx - 1, n - 2) + 1
    return v.data[row, col]
end

The functions similar and length are mandatory and must be implemented for custom vector types. The functions size and getindex support REPL display, aiding interaction, though they are optional for Krylov.jl’s functionality.

Efficient stencil implementation

Using HaloVector with OffsetArray, we can apply the discrete Laplacian operator in a matrix-free approach with a 5-point stencil, managing halo regions effectively. This layout allows clean and efficient Laplacian computation without boundary checks within the core loop.

using LinearAlgebra

# Define a matrix-free Laplacian operator
struct LaplacianOperator
    Nx::Int        # Number of grid points in the x-direction
    Ny::Int        # Number of grid points in the y-direction
    Δx::Float64    # Grid spacing in the x-direction
    Δy::Float64    # Grid spacing in the y-direction
end

# Define size and element type for the operator
Base.size(A::LaplacianOperator) = (A.Nx * A.Ny, A.Nx * A.Ny)
Base.eltype(A::LaplacianOperator) = Float64

function LinearAlgebra.mul!(y::HaloVector{Float64}, A::LaplacianOperator, u::HaloVector{Float64})
    # Apply the discrete Laplacian in 2D
    for i in 1:A.Nx
        for j in 1:A.Ny
            # Calculate second derivatives using finite differences
            dx2 = (u.data[i-1,j] - 2 * u.data[i,j] + u.data[i+1,j]) / (A.Δx)^2
            dy2 = (u.data[i,j-1] - 2 * u.data[i,j] + u.data[i,j+1]) / (A.Δy)^2

            # Update the output vector with the Laplacian result
            y.data[i,j] = dx2 + dy2
        end
    end

    return y
end

Methods to overload for compatibility with Krylov.jl

To integrate HaloVector with Krylov.jl, we define essential vector operations, including dot products, norms, scalar multiplication, and element-wise updates. These implementations allow Krylov.jl to leverage custom vector types, enhancing both solver flexibility and performance.

using Krylov
import Krylov.FloatOrComplex

function Krylov.kdot(n::Integer, x::HaloVector{T}, y::HaloVector{T}) where T <: FloatOrComplex
    mx, nx = size(x.data)
    _x = x.data
    _y = y.data
    res = zero(real(T))
    for j = 1:nx-1
        for i = 1:mx-1
            res += _x[i,j] * conj(_y[i,j])
        end
    end
    return res
end

function Krylov.knorm(n::Integer, x::HaloVector{T}) where T <: FloatOrComplex
    mx, nx = size(x.data)
    _x = x.data
    res = zero(real(T))
    for j = 1:nx-1
        for i = 1:mx-1
            res += abs2(_x[i,j])
        end
    end
    return sqrt(res)
end

function Krylov.kscal!(n::Integer, s::T, x::HaloVector{T}) where T <: FloatOrComplex
    mx, nx = size(x.data)
    _x = x.data
    for j = 1:nx-1
        for i = 1:mx-1
            _x[i,j] = s * _x[i,j]
        end
    end
    return x
end

function Krylov.kdiv!(n::Integer, x::HaloVector{T}, s::T) where T <: FloatOrComplex
    mx, nx = size(x.data)
    _x = x.data
    for j = 1:nx-1
        for i = 1:mx-1
            _x[i,j] = _x[i,j] / s
        end
    end
    return x
end

function Krylov.kaxpy!(n::Integer, s::T, x::HaloVector{T}, y::HaloVector{T}) where T <: FloatOrComplex
    mx, nx = size(x.data)
    _x = x.data
    _y = y.data
    for j = 1:nx-1
        for i = 1:mx-1
            _y[i,j] += s * _x[i,j]
        end
    end
    return y
end

function Krylov.kaxpby!(n::Integer, s::T, x::HaloVector{T}, t::T, y::HaloVector{T}) where T <: FloatOrComplex
    mx, nx = size(x.data)
    _x = x.data
    _y = y.data
    for j = 1:nx-1
        for i = 1:mx-1
            _y[i,j] = s * _x[i,j] + t * _y[i,j]
        end
    end
    return y
end

function Krylov.kcopy!(n::Integer, y::HaloVector{T}, x::HaloVector{T}) where T <: FloatOrComplex
    mx, nx = size(x.data)
    _x = x.data
    _y = y.data
    for j = 1:nx-1
        for i = 1:mx-1
            _y[i,j] = _x[i,j]
        end
    end
    return y
end

function Krylov.kscalcopy!(n::Integer, y::HaloVector{T}, s::T, x::HaloVector{T}) where T <: FloatOrComplex
    mx, nx = size(x.data)
    _x = x.data
    _y = y.data
    for j = 1:nx-1
        for i = 1:mx-1
            _y[i,j] = s * _x[i,j]
        end
    end
    return y
end

function Krylov.kdivcopy!(n::Integer, y::HaloVector{T}, x::HaloVector{T}, s::T) where T <: FloatOrComplex
    mx, nx = size(x.data)
    _x = x.data
    _y = y.data
    for j = 1:nx-1
        for i = 1:mx-1
            _y[i,j] = _x[i,j] / s
        end
    end
    return y
end

function Krylov.kfill!(x::HaloVector{T}, val::T) where T <: FloatOrComplex
    mx, nx = size(x.data)
    _x = x.data
    for j = 1:nx-1
        for i = 1:mx-1
            _x[i,j] = val
        end
    end
    return x
end

function Krylov.kref!(n::Integer, x::HaloVector{T}, y::HaloVector{T}, c::T, s::T) where T <: FloatOrComplex
    mx, nx = size(x.data)
    _x = x.data
    _y = y.data
    for j = 1:nx-1
        for i = 1:mx-1
            x_ij = _x[i,j]
            y_ij = _y[i,j]
            _x[i,j] = c       * x_ij + s * y_ij
            _y[i,j] = conj(s) * x_ij - c * y_ij
        end
    end
    return x, y
end

By default, kdiv!(n, y, x, s) calls kscal!(n, y, t, x) with t = 1/s, so a separate implementation isn't required. However, this approach may introduce numerical issues when s is very small. We do this because computing $y \leftarrow t \times x$ can often leverage SIMD or fused multiply-add (FMA) instructions on certain architectures, capabilities that a direct element-wise division $y \leftarrow x/s$ typically lacks. Thus, the implementation of kdiv! provides flexibility, allowing users to choose a trade-off between speed and numerical precision by overloading the function if needed. The operations provided by kdivcopy! and kscalcopy! could be implemented directly by using kcopy!, kscal!, and kdiv! but require two separate memory passes, which can be suboptimal for performance. To address this limitation, kdivcopy! and kscalcopy! fuse the copy and scaling/division operations into a single memory pass. Note that Krylov.kref! is only required for the function minres_qlp.

2D Poisson equation solver with Krylov methods

using Krylov, OffsetArrays
import Krylov: solution, statistics

# Parameters
L = 1.0            # Length of the square domain
Nx = 200           # Number of interior grid points in x
Ny = 200           # Number of interior grid points in y
Δx = L / (Nx + 1)  # Grid spacing in x
Δy = L / (Ny + 1)  # Grid spacing in y

# Define the source term f(x,y)
f(x,y) = -2 * π * π * sin(π * x) * sin(π * y)

# Create the matrix-free Laplacian operator
A = LaplacianOperator(Nx, Ny, Δx, Δy)

# Create the right-hand side
rhs = zeros(Float64, Nx+2, Ny+2)
data = OffsetArray(rhs, 0:Nx+1, 0:Ny+1)
for j in 1:Ny
    for i in 1:Nx
        xi = i * Δx
        yj = j * Δy
        data[i,j] = f(xi, yj)
    end
end
b = HaloVector(data)

# Allocate the workspace
kc = KrylovConstructor(b)
workspace = CgWorkspace(kc)

# Solve the system with CG
Krylov.cg!(workspace, A, b, atol=1e-12, rtol=0.0, verbose=1)
u_sol = solution(workspace)
stats = statistics(workspace)
SimpleStats
 niter: 194
 solved: true
 inconsistent: false
 indefinite: false
 residuals: []
 Aresiduals: []
 κ₂(A): []
 timer: 657.66ms
 status: solution good enough given atol and rtol
# The exact solution is u(x,y) = sin(πx) * sin(πy)
u_star = [sin(π * i * Δx) * sin(π * j * Δy) for i=1:Nx, j=1:Ny]
norm(u_sol.data[1:Nx, 1:Ny] - u_star, Inf)
2.0356596363790835e-5
Note

Only the in-place version of the Krylov methods is supported for custom vector types.

Conclusion

Implementing a 2D Poisson equation solver with HaloVector improves code clarity and efficiency. Custom indexing with OffsetArray streamlines halo region management, eliminating boundary checks within the core loop. This approach reduces branching, yielding faster execution, especially on large grids. HaloVector's flexibility also makes it easy to extend to 3D grids or more complex stencils.

Info

Oceananigans.jl uses a similar strategy with its type KrylovField, efficiently solving large linear systems with Krylov.jl.

Solving saddle point systems with BlockArrays.jl and Krylov.jl

BlockArrays.jl simplifies working with structured matrices, making it an ideal tool for solving saddle point systems. In this example, we solve a structured linear system $Ax = b$ of the form:

\[\begin{bmatrix} K & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} c \\ d \end{bmatrix}.\]

We first define the matrix $A$ and the vector $b$ using BlockArrays.jl:

using LinearAlgebra
using BlockArrays

nK = 10
nB = 2
K = rand(nK, nK)
K = K * K' + I
B = rand(nB, nK)
c = rand(nK)
d = rand(nB)

# Create the saddle point matrix A
A = BlockArray{Float64}(undef, [nK, nB], [nK, nB])
A[Block(1, 1)] = K
A[Block(1, 2)] = B'
A[Block(2, 1)] = B
A[Block(2, 2)] = zeros(nB, nB)

# Create the right-hand side vector b
b = BlockVector{Float64}(undef, [nK, nB])
b[Block(1)] = c
b[Block(2)] = d

For saddle point systems, a well-known preconditioner is the "ideal preconditioner'' $P^{-1}$, as described in the paper "A Note on Preconditioning for Indefinite Linear Systems". It is defined as:

\[P^{-1} = \begin{bmatrix} K^{-1} & 0 \\ 0 & (B K^{-1} B^T)^{-1} \end{bmatrix}.\]

This preconditioner guarantees convergence in exactly three iterations, as $P^{-1}A$ has only three distinct eigenvalues. However, this preconditioner is expensive, as it requires $K^{-1}$ and the inverse of the Schur complement $B K^{-1} B^T$. One common approach is to replace $K^{-1}$ with $\mathrm{diag}(K)^{-1}$, creating a cheaper preconditioner.

struct IdealPreconditioner{T1, T2}
    BD1::T1
    BD2::T2
end

function LinearAlgebra.mul!(y::BlockVector, P::IdealPreconditioner, x::BlockVector)
    mul!(y.blocks[1], P.BD1, x.blocks[1])
    mul!(y.blocks[2], P.BD2, x.blocks[2])
    return y
end

# Create the ideal preconditioner
BD1 = inv(K)
BD2 = inv(B * BD1 * B')
P = IdealPreconditioner(BD1, BD2)

We now solve the system $Ax = b$ using minres with our preconditioner:

using Krylov
import Krylov: solution, iteration_count

kc = KrylovConstructor(b)
workspace = MinresWorkspace(kc)
minres!(workspace, A, b; M=P)

x = solution(workspace)
niter = iteration_count(workspace)
3

This example demonstrates how BlockArrays.jl and Krylov.jl can be effectively combined to solve structured saddle point systems.

Distributed Krylov solvers with MPI.jl

Krylov.jl supports distributed-memory computations through MPI.jl, enabling Krylov solvers to scale across multiple processes and compute nodes. This makes them suitable for solving large-scale linear systems in high-performance computing (HPC) environments.

To get started, you need to install the mpiexecjl binary using the function MPI.install_mpiexecjl. If you wish to change the underlying MPI implementation, you can use the package MPIPreferences.jl and its functions MPIPreferences.use_binary_binary and MPIPreferences.use_jll_binary.

Next, define an MPIVector to be used as the storage type for Krylov workspaces, replacing the standard Vector.

using MPI

struct MPIVector{T, V<:AbstractVector{T}} <: AbstractVector{T}
    data::V
    comm::MPI.Comm
    global_len::Int
    data_range::UnitRange{Int}
end

Base.similar(v::MPIVector) = MPIVector(similar(v.data), v.comm, v.global_len, v.data_range)
Base.length(v::MPIVector) = v.global_len
Base.eltype(v::MPIVector{T}) where T = T

function MPIVector(global_vec::V, comm::MPI.Comm = MPI.COMM_WORLD) where V
    T = eltype(V)
    size, rank = MPI.Comm_size(comm), MPI.Comm_rank(comm)
    n = length(global_vec)
    chunk = div(n + size - 1, size)
    istart = rank * chunk + 1
    iend = min((rank + 1) * chunk, n)
    data = global_vec[istart:iend]
    return MPIVector{T, V}(data, comm, n, istart:iend)
end

function MPIVector(::Type{V}, global_len::Int, comm::MPI.Comm = MPI.COMM_WORLD) where V
    size, rank = MPI.Comm_size(comm), MPI.Comm_rank(comm)
    chunk = div(global_len + size - 1, size)
    istart = rank * chunk + 1
    iend = min((rank + 1) * chunk, global_len)
    data = V(undef, iend-istart+1)
    return MPIVector{T, V}(data, comm, global_len, istart:iend)
end

To integrate MPIVector with Krylov.jl, you need to define the essential vector operations. These implementations enable Krylov.jl to operate with MPI-based vectors on both CPU and GPU.

using Krylov
import Krylov.FloatOrComplex


function Krylov.kdot(n::Integer, x::MPIVector{T}, y::MPIVector{T}) where T <: FloatOrComplex
    data_dot = sum(x.data .* conj.(y.data))
    res = MPI.Allreduce(data_dot, +, x.comm)
    return res
end

function Krylov.knorm(n::Integer, x::MPIVector{T}) where T <: FloatOrComplex
    res = Krylov.kdot(n, x, x)
    return sqrt(res)
end

function Krylov.kscal!(n::Integer, s::T, x::MPIVector{T}) where T <: FloatOrComplex
    x.data .*= s
    return x
end

function Krylov.kdiv!(n::Integer, x::MPIVector{T}, s::T) where T <: FloatOrComplex
    x.data ./= s
    return x
end

function Krylov.kaxpy!(n::Integer, s::T, x::MPIVector{T}, y::MPIVector{T}) where T <: FloatOrComplex
    y.data .+= s .* x.data
    return y
end

function Krylov.kaxpby!(n::Integer, s::T, x::MPIVector{T}, t::T, y::MPIVector{T}) where T <: FloatOrComplex
    y.data .= s .* x.data .+ t .* y.data
    return y
end

function Krylov.kcopy!(n::Integer, y::MPIVector{T}, x::MPIVector{T}) where T <: FloatOrComplex
    y.data .= x.data
    return y
end

function Krylov.kscalcopy!(n::Integer, y::MPIVector{T}, s::T, x::MPIVector{T}) where T <: FloatOrComplex
    y.data .= x.data .* s
    return y
end

function Krylov.kdivcopy!(n::Integer, y::MPIVector{T}, x::MPIVector{T}, s::T) where T <: FloatOrComplex
    y.data .= x.data ./ s
    return y
end

function Krylov.kfill!(x::MPIVector{T}, val::T) where T <: FloatOrComplex
    x.data .= val
    return x
end

The next step is to create a distributed linear operator. As a simple example, we define a diagonal operator with 1:n on its diagonal by implementing an MPIOperator:

struct MPIOperator{T}
    m::Int
    n::Int
end

Base.size(A::MPIOperator) = (A.m, A.n)
Base.eltype(A::MPIOperator{T}) where T = T

function LinearAlgebra.mul!(y::MPIVector{Float64}, A::MPIOperator{Float64}, u::MPIVector{Float64})
    y.data .= u.data_range .* u.data
    return y
end

With all the previous definitions in place, you can now assemble a script mpi_krylov.jl that includes them, along with a small driver code provided below. This script can be executed with multiple processes using the binary mpiexecjl.

MPI.Init()

comm = MPI.COMM_WORLD
rank = MPI.Comm_rank(comm)
n = 10  # global_len in MPIVector
T = Float64
method = :cg

# Version without MPI
A_global = Diagonal(1:n) .|> T
b_global = collect(n:-1:1) .|> T
x_global, _ = krylov_solve(Val(method), A_global, b_global)

# Version with MPI
A_mpi = MPIOperator{T}(n, n)
b_mpi = MPIVector(b_global)

kc = KrylovConstructor(b_mpi)
workspace = krylov_workspace(Val(method), kc)
krylov_solve!(workspace, A_mpi, b_mpi)
x_mpi = Krylov.solution(workspace)

# Check the solution
for i = 0:MPI.Comm_size(comm)-1
    if i == rank
        println("Local data: ", x_mpi.data)
        println("Global data: ", x_global)
    end
    MPI.Barrier(comm)
end

MPI.Finalize()

To launch this script on four processes:

mpiexecjl -n 4 julia mpi_krylov.jl

The example above runs on CPU but also works on GPU. It can target supercomputers such as Frontier or Aurora with various GPU backends (NVIDIA, AMD, or Intel). See the section on GPU support for details on the GPU-enabled vectors usable in an MPIVector.

Note

Make sure to use an MPI implementation that is GPU-aware if you intend to run distributed Krylov solvers on GPUs.