using Krylov
using LinearAlgebra, Printf
m = 5
n = 8
λ = 1.0e-3
A = rand(m, n)
b = A * ones(n)
xy_exact = [A λ*I] \ b # In Julia, this is the min-norm solution!
(x, y, stats) = craig(A, b, λ=λ, atol=0.0, rtol=1.0e-20, verbose=1)
show(stats)
# Check that we have a minimum-norm solution.
# When λ > 0 we solve min ‖(x,s)‖ s.t. Ax + λs = b, and we get s = λy.
@printf("Primal feasibility: %7.1e\n", norm(b - A * x - λ^2 * y) / norm(b))
@printf("Dual feasibility: %7.1e\n", norm(x - A' * y) / norm(x))
@printf("Error in x: %7.1e\n", norm(x - xy_exact[1:n]) / norm(xy_exact[1:n]))
if λ > 0.0
@printf("Error in y: %7.1e\n", norm(λ * y - xy_exact[n+1:n+m]) / norm(xy_exact[n+1:n+m]))
end
CRAIG: system of 5 equations in 8 variables
k ‖r‖ ‖x‖ ‖A‖ κ(A) α β timer
0 8.36e+00 0.00e+00 0.00e+00 0.00e+00 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0.49s
1 2.25e-01 2.79e+00 3.00e+00 3.00e+00 3.0e+00 8.0e-02 0.91s
2 1.13e-01 2.81e+00 3.13e+00 4.43e+00 8.2e-01 4.1e-01 1.09s
3 3.80e-02 2.81e+00 3.26e+00 5.76e+00 8.6e-01 2.9e-01 1.09s
4 9.36e-02 2.81e+00 3.46e+00 7.09e+00 4.4e-01 1.1e+00 1.09s
5 3.90e-10 2.82e+00 3.48e+00 9.21e+00 3.3e-01 1.4e-09 1.09s
SimpleStats
niter: 5
solved: true
inconsistent: false
indefinite: false
npcCount: 0
residuals: []
Aresiduals: []
κ₂(A): []
timer: 1.09s
status: solution good enough for the tolerances given
Primal feasibility: 4.7e-11
Dual feasibility: 3.1e-16
Error in x: 4.6e-11
Error in y: 1.5e-11