Tutorial
NLPModelsIpopt is a thin IPOPT wrapper for NLPModels. In this tutorial we show examples of problems created with NLPModels and solved with Ipopt.
Simple problems
Calling Ipopt is simple:
NLPModelsIpopt.ipopt
— Functionoutput = ipopt(nlp; kwargs...)
Solves the NLPModel
problem nlp
using IpOpt
.
For advanced usage, first define a IpoptSolver
to preallocate the memory used in the algorithm, and then call solve!
: solver = IpoptSolver(nlp) solve!(solver, nlp; kwargs...) solve!(solver, nlp, stats; kwargs...)
Optional keyword arguments
x0
: a vector of sizenlp.meta.nvar
to specify an initial primal guessy0
: a vector of sizenlp.meta.ncon
to specify an initial dual guess for the general constraintszL
: a vector of sizenlp.meta.nvar
to specify initial multipliers for the lower bound constraintszU
: a vector of sizenlp.meta.nvar
to specify initial multipliers for the upper bound constraints
All other keyword arguments will be passed to Ipopt as an option. See https://coin-or.github.io/Ipopt/OPTIONS.html for the list of options accepted.
Output
The returned value is a GenericExecutionStats
, see SolverCore.jl
.
Examples
using NLPModelsIpopt, ADNLPModels
nlp = ADNLPModel(x -> sum(x.^2), ones(3));
stats = ipopt(nlp, print_level = 0)
using NLPModelsIpopt, ADNLPModels
nlp = ADNLPModel(x -> sum(x.^2), ones(3));
solver = IpoptSolver(nlp);
stats = solve!(solver, nlp, print_level = 0)
ipopt(nls::AbstractNLSModel; kwargs...)
Solve the least-squares problem nls
using IPOPT
by moving the nonlinear residual to the constraints.
Arguments
nls::AbstractNLSModel
: The least-squares problem to solve.
For advanced usage, first define an IpoptSolver
to preallocate the memory used in the algorithm, and then call solve!
: solver = IpoptSolver(nls) solve!(solver, nls; kwargs...)
Examples
using NLPModelsIpopt, ADNLPModels
nls = ADNLSModel(x -> [x[1] - 1, x[2] - 2], [0.0, 0.0], 2)
stats = ipopt(nls, print_level = 0)
Let's create an NLPModel for the Rosenbrock function
\[f(x) = (x_1 - 1)^2 + 100 (x_2 - x_1^2)^2\]
and solve it with Ipopt:
using ADNLPModels, NLPModels, NLPModelsIpopt
nlp = ADNLPModel(x -> (x[1] - 1)^2 + 100 * (x[2] - x[1]^2)^2, [-1.2; 1.0])
stats = ipopt(nlp)
print(stats)
******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open source code under the Eclipse Public License (EPL).
For more information visit https://github.com/coin-or/Ipopt
******************************************************************************
This is Ipopt version 3.14.17, running with linear solver MUMPS 5.8.0.
Number of nonzeros in equality constraint Jacobian...: 0
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian Hessian.............: 3
Total number of variables............................: 2
variables with only lower bounds: 0
variables with lower and upper bounds: 0
variables with only upper bounds: 0
Total number of equality constraints.................: 0
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 2.4200000e+01 0.00e+00 1.00e+02 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0
1 4.7318843e+00 0.00e+00 2.15e+00 -1.0 3.81e-01 - 1.00e+00 1.00e+00f 1
2 4.0873987e+00 0.00e+00 1.20e+01 -1.0 4.56e+00 - 1.00e+00 1.25e-01f 4
3 3.2286726e+00 0.00e+00 4.94e+00 -1.0 2.21e-01 - 1.00e+00 1.00e+00f 1
4 3.2138981e+00 0.00e+00 1.02e+01 -1.0 4.82e-01 - 1.00e+00 1.00e+00f 1
5 1.9425854e+00 0.00e+00 1.62e+00 -1.0 6.70e-02 - 1.00e+00 1.00e+00f 1
6 1.6001937e+00 0.00e+00 3.44e+00 -1.0 7.35e-01 - 1.00e+00 2.50e-01f 3
7 1.1783896e+00 0.00e+00 1.92e+00 -1.0 1.44e-01 - 1.00e+00 1.00e+00f 1
8 9.2241158e-01 0.00e+00 4.00e+00 -1.0 2.08e-01 - 1.00e+00 1.00e+00f 1
9 5.9748862e-01 0.00e+00 7.36e-01 -1.0 8.91e-02 - 1.00e+00 1.00e+00f 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
10 4.5262510e-01 0.00e+00 2.42e+00 -1.7 2.97e-01 - 1.00e+00 5.00e-01f 2
11 2.8076244e-01 0.00e+00 9.25e-01 -1.7 1.02e-01 - 1.00e+00 1.00e+00f 1
12 2.1139340e-01 0.00e+00 3.34e+00 -1.7 1.77e-01 - 1.00e+00 1.00e+00f 1
13 8.9019501e-02 0.00e+00 2.25e-01 -1.7 9.45e-02 - 1.00e+00 1.00e+00f 1
14 5.1535405e-02 0.00e+00 1.49e+00 -1.7 2.84e-01 - 1.00e+00 5.00e-01f 2
15 1.9992778e-02 0.00e+00 4.64e-01 -1.7 1.09e-01 - 1.00e+00 1.00e+00f 1
16 7.1692436e-03 0.00e+00 1.03e+00 -1.7 1.39e-01 - 1.00e+00 1.00e+00f 1
17 1.0696137e-03 0.00e+00 9.09e-02 -1.7 5.50e-02 - 1.00e+00 1.00e+00f 1
18 7.7768464e-05 0.00e+00 1.44e-01 -2.5 5.53e-02 - 1.00e+00 1.00e+00f 1
19 2.8246695e-07 0.00e+00 1.50e-03 -2.5 7.31e-03 - 1.00e+00 1.00e+00f 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
20 8.5170750e-12 0.00e+00 4.90e-05 -5.7 1.05e-03 - 1.00e+00 1.00e+00f 1
21 3.7439756e-21 0.00e+00 1.73e-10 -5.7 2.49e-06 - 1.00e+00 1.00e+00f 1
Number of Iterations....: 21
(scaled) (unscaled)
Objective...............: 1.7365378678754519e-21 3.7439756431394737e-21
Dual infeasibility......: 1.7312156654298279e-10 3.7325009746667082e-10
Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00
Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00
Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00
Overall NLP error.......: 1.7312156654298279e-10 3.7325009746667082e-10
Number of objective function evaluations = 45
Number of objective gradient evaluations = 22
Number of equality constraint evaluations = 0
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 0
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 21
Total seconds in IPOPT = 4.148
EXIT: Optimal Solution Found.
Generic Execution stats
status: first-order stationary
objective value: 3.743975643139474e-21
primal feasibility: 0.0
dual feasibility: 3.732500974666708e-10
solution: [0.9999999999400667 0.9999999998789006]
iterations: 21
elapsed time: 4.148
solver specific:
real_time: 4.14860987663269
internal_msg: :Solve_Succeeded
For comparison, we present the same problem and output using JuMP:
using JuMP, Ipopt
model = Model(Ipopt.Optimizer)
x0 = [-1.2; 1.0]
@variable(model, x[i=1:2], start=x0[i])
@NLobjective(model, Min, (x[1] - 1)^2 + 100 * (x[2] - x[1]^2)^2)
optimize!(model)
This is Ipopt version 3.14.17, running with linear solver MUMPS 5.8.0.
Number of nonzeros in equality constraint Jacobian...: 0
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian Hessian.............: 3
Total number of variables............................: 2
variables with only lower bounds: 0
variables with lower and upper bounds: 0
variables with only upper bounds: 0
Total number of equality constraints.................: 0
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 2.4200000e+01 0.00e+00 1.00e+02 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0
1 4.7318843e+00 0.00e+00 2.15e+00 -1.0 3.81e-01 - 1.00e+00 1.00e+00f 1
2 4.0873987e+00 0.00e+00 1.20e+01 -1.0 4.56e+00 - 1.00e+00 1.25e-01f 4
3 3.2286726e+00 0.00e+00 4.94e+00 -1.0 2.21e-01 - 1.00e+00 1.00e+00f 1
4 3.2138981e+00 0.00e+00 1.02e+01 -1.0 4.82e-01 - 1.00e+00 1.00e+00f 1
5 1.9425854e+00 0.00e+00 1.62e+00 -1.0 6.70e-02 - 1.00e+00 1.00e+00f 1
6 1.6001937e+00 0.00e+00 3.44e+00 -1.0 7.35e-01 - 1.00e+00 2.50e-01f 3
7 1.1783896e+00 0.00e+00 1.92e+00 -1.0 1.44e-01 - 1.00e+00 1.00e+00f 1
8 9.2241158e-01 0.00e+00 4.00e+00 -1.0 2.08e-01 - 1.00e+00 1.00e+00f 1
9 5.9748862e-01 0.00e+00 7.36e-01 -1.0 8.91e-02 - 1.00e+00 1.00e+00f 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
10 4.5262510e-01 0.00e+00 2.42e+00 -1.7 2.97e-01 - 1.00e+00 5.00e-01f 2
11 2.8076244e-01 0.00e+00 9.25e-01 -1.7 1.02e-01 - 1.00e+00 1.00e+00f 1
12 2.1139340e-01 0.00e+00 3.34e+00 -1.7 1.77e-01 - 1.00e+00 1.00e+00f 1
13 8.9019501e-02 0.00e+00 2.25e-01 -1.7 9.45e-02 - 1.00e+00 1.00e+00f 1
14 5.1535405e-02 0.00e+00 1.49e+00 -1.7 2.84e-01 - 1.00e+00 5.00e-01f 2
15 1.9992778e-02 0.00e+00 4.64e-01 -1.7 1.09e-01 - 1.00e+00 1.00e+00f 1
16 7.1692436e-03 0.00e+00 1.03e+00 -1.7 1.39e-01 - 1.00e+00 1.00e+00f 1
17 1.0696137e-03 0.00e+00 9.09e-02 -1.7 5.50e-02 - 1.00e+00 1.00e+00f 1
18 7.7768464e-05 0.00e+00 1.44e-01 -2.5 5.53e-02 - 1.00e+00 1.00e+00f 1
19 2.8246695e-07 0.00e+00 1.50e-03 -2.5 7.31e-03 - 1.00e+00 1.00e+00f 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
20 8.5170750e-12 0.00e+00 4.90e-05 -5.7 1.05e-03 - 1.00e+00 1.00e+00f 1
21 3.7439756e-21 0.00e+00 1.73e-10 -5.7 2.49e-06 - 1.00e+00 1.00e+00f 1
Number of Iterations....: 21
(scaled) (unscaled)
Objective...............: 1.7365378678754519e-21 3.7439756431394737e-21
Dual infeasibility......: 1.7312156654298279e-10 3.7325009746667082e-10
Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00
Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00
Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00
Overall NLP error.......: 1.7312156654298279e-10 3.7325009746667082e-10
Number of objective function evaluations = 45
Number of objective gradient evaluations = 22
Number of equality constraint evaluations = 0
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 0
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 21
Total seconds in IPOPT = 4.219
EXIT: Optimal Solution Found.
Here is an example with a constrained problem:
n = 10
x0 = ones(n)
x0[1:2:end] .= -1.2
lcon = ucon = zeros(n-2)
nlp = ADNLPModel(x -> sum((x[i] - 1)^2 + 100 * (x[i+1] - x[i]^2)^2 for i = 1:n-1), x0,
x -> [3 * x[k+1]^3 + 2 * x[k+2] - 5 + sin(x[k+1] - x[k+2]) * sin(x[k+1] + x[k+2]) +
4 * x[k+1] - x[k] * exp(x[k] - x[k+1]) - 3 for k = 1:n-2],
lcon, ucon)
stats = ipopt(nlp, print_level=0)
print(stats)
Generic Execution stats
status: first-order stationary
objective value: 6.232458632437464
primal feasibility: 8.354650304909228e-12
dual feasibility: 6.315958866407726e-9
solution: [-0.9505563573613093 0.9139008176388945 0.9890905176644905 0.9985592422681151 ⋯ 0.999999930070643]
multipliers: [4.1358568305002255 -1.8764949037033418 -0.06556333356358675 -0.021931863018312875 ⋯ -7.376592164341975e-6]
iterations: 6
elapsed time: 6.304
solver specific:
real_time: 6.304074048995972
internal_msg: :Solve_Succeeded
Return value
The return value of ipopt
is a GenericExecutionStats
instance from SolverCore
. It contains basic information on the solution returned by the solver. In addition to the built-in fields of GenericExecutionStats
, we store the detailed Ipopt output message inside solver_specific[:internal_msg]
.
Here is an example using the constrained problem solve:
stats.solver_specific[:internal_msg]
:Solve_Succeeded
Monitoring optimization with callbacks
You can monitor the optimization process using a callback function. The callback allows you to access the current iterate and constraint violations at each iteration, which is useful for custom stopping criteria, logging, or real-time analysis.
Callback parameters
The callback function receives the following parameters from Ipopt:
alg_mod
: algorithm mode (0 = regular, 1 = restoration phase)iter_count
: current iteration numberobj_value
: current objective function valueinf_pr
: primal infeasibility (constraint violation)inf_du
: dual infeasibilitymu
: complementarity measured_norm
: norm of the primal stepregularization_size
: size of regularizationalpha_du
: step size for dual variablesalpha_pr
: step size for primal variablesls_trials
: number of line search trials
Example usage
Here's a complete example showing how to use callbacks to monitor the optimization:
using ADNLPModels, NLPModelsIpopt
function my_callback(alg_mod, iter_count, obj_value, inf_pr, inf_du, mu, d_norm, regularization_size, alpha_du, alpha_pr, ls_trials, args...)
# Log iteration information (these are the standard parameters passed by Ipopt)
println("Iteration $iter_count:")
println(" Objective value = ", obj_value)
println(" Primal infeasibility = ", inf_pr)
println(" Dual infeasibility = ", inf_du)
println(" Complementarity = ", mu)
# Return true to continue, false to stop
return iter_count < 5 # Stop after 5 iterations for this example
end
nlp = ADNLPModel(x -> (x[1] - 1)^2 + 100 * (x[2] - x[1]^2)^2, [-1.2; 1.0])
stats = ipopt(nlp, callback = my_callback, print_level = 0)
"Execution stats: user-requested stop"
You can also use callbacks with the advanced solver interface:
# Advanced usage with IpoptSolver
solver = IpoptSolver(nlp)
stats = solve!(solver, nlp, callback = my_callback, print_level = 0)
"Execution stats: user-requested stop"
Custom stopping criteria
Callbacks are particularly useful for implementing custom stopping criteria:
function custom_stopping_callback(alg_mod, iter_count, obj_value, inf_pr, inf_du, mu, d_norm, regularization_size, alpha_du, alpha_pr, ls_trials, args...)
# Custom stopping criterion: stop if objective gets close to optimum
if obj_value < 0.01
println("Custom stopping criterion met at iteration $iter_count")
return false # Stop optimization
end
return true # Continue optimization
end
nlp = ADNLPModel(x -> (x[1] - 1)^2 + 100 * (x[2] - x[1]^2)^2, [-1.2; 1.0])
stats = ipopt(nlp, callback = custom_stopping_callback, print_level = 0)
"Execution stats: user-requested stop"
Manual input
In this section, we work through an example where we specify the problem and its derivatives manually. For this, we need to implement the following NLPModel
API methods:
obj(nlp, x)
: evaluate the objective value atx
;grad!(nlp, x, g)
: evaluate the objective gradient atx
;cons!(nlp, x, c)
: evaluate the vector of constraints, if any;jac_structure!(nlp, rows, cols)
: fillrows
andcols
with the spartity structure of the Jacobian, if the problem is constrained;jac_coord!(nlp, x, vals)
: fillvals
with the Jacobian values corresponding to the sparsity structure returned byjac_structure!()
;hess_structure!(nlp, rows, cols)
: fillrows
andcols
with the spartity structure of the lower triangle of the Hessian of the Lagrangian;hess_coord!(nlp, x, y, vals; obj_weight=1.0)
: fillvals
with the values of the Hessian of the Lagrangian corresponding to the sparsity structure returned byhess_structure!()
, whereobj_weight
is the weight assigned to the objective, andy
is the vector of multipliers.
The model that we implement is a logistic regression model. We consider the model $h(\beta; x) = (1 + e^{-\beta^Tx})^{-1}$, and the loss function
\[\ell(\beta) = -\sum_{i = 1}^m y_i \ln h(\beta; x_i) + (1 - y_i) \ln(1 - h(\beta; x_i))\]
with regularization $\lambda \|\beta\|^2 / 2$.
using DataFrames, LinearAlgebra, NLPModels, NLPModelsIpopt, Random
mutable struct LogisticRegression <: AbstractNLPModel{Float64, Vector{Float64}}
X :: Matrix
y :: Vector
λ :: Real
meta :: NLPModelMeta{Float64, Vector{Float64}} # required by AbstractNLPModel
counters :: Counters # required by AbstractNLPModel
end
function LogisticRegression(X, y, λ = 0.0)
m, n = size(X)
meta = NLPModelMeta(n, name="LogisticRegression", nnzh=div(n * (n+1), 2) + n) # nnzh is the length of the coordinates vectors
return LogisticRegression(X, y, λ, meta, Counters())
end
function NLPModels.obj(nlp :: LogisticRegression, β::AbstractVector)
hβ = 1 ./ (1 .+ exp.(-nlp.X * β))
return -sum(nlp.y .* log.(hβ .+ 1e-8) .+ (1 .- nlp.y) .* log.(1 .- hβ .+ 1e-8)) + nlp.λ * dot(β, β) / 2
end
function NLPModels.grad!(nlp :: LogisticRegression, β::AbstractVector, g::AbstractVector)
hβ = 1 ./ (1 .+ exp.(-nlp.X * β))
g .= nlp.X' * (hβ .- nlp.y) + nlp.λ * β
end
function NLPModels.hess_structure!(nlp :: LogisticRegression, rows :: AbstractVector{<:Integer}, cols :: AbstractVector{<:Integer})
n = nlp.meta.nvar
I = ((i,j) for i = 1:n, j = 1:n if i ≥ j)
rows[1 : nlp.meta.nnzh] .= [getindex.(I, 1); 1:n]
cols[1 : nlp.meta.nnzh] .= [getindex.(I, 2); 1:n]
return rows, cols
end
function NLPModels.hess_coord!(nlp :: LogisticRegression, β::AbstractVector, vals::AbstractVector; obj_weight=1.0, y=Float64[])
n, m = nlp.meta.nvar, length(nlp.y)
hβ = 1 ./ (1 .+ exp.(-nlp.X * β))
fill!(vals, 0.0)
for k = 1:m
hk = hβ[k]
p = 1
for j = 1:n, i = j:n
vals[p] += obj_weight * hk * (1 - hk) * nlp.X[k,i] * nlp.X[k,j]
p += 1
end
end
vals[nlp.meta.nnzh+1:end] .= nlp.λ * obj_weight
return vals
end
Random.seed!(0)
# Training set
m = 1000
df = DataFrame(:age => rand(18:60, m), :salary => rand(40:180, m) * 1000)
df.buy = (df.age .> 40 .+ randn(m) * 5) .| (df.salary .> 120_000 .+ randn(m) * 10_000)
X = [ones(m) df.age df.age.^2 df.salary df.salary.^2 df.age .* df.salary]
y = df.buy
λ = 1.0e-2
nlp = LogisticRegression(X, y, λ)
stats = ipopt(nlp, print_level=0)
β = stats.solution
# Test set - same generation method
m = 100
df = DataFrame(:age => rand(18:60, m), :salary => rand(40:180, m) * 1000)
df.buy = (df.age .> 40 .+ randn(m) * 5) .| (df.salary .> 120_000 .+ randn(m) * 10_000)
X = [ones(m) df.age df.age.^2 df.salary df.salary.^2 df.age .* df.salary]
hβ = 1 ./ (1 .+ exp.(-X * β))
ypred = hβ .> 0.5
acc = count(df.buy .== ypred) / m
println("acc = $acc")
acc = 0.91
using Plots
gr()
f(a, b) = dot(β, [1.0; a; a^2; b; b^2; a * b])
P = findall(df.buy .== true)
scatter(df.age[P], df.salary[P], c=:blue, m=:square)
P = findall(df.buy .== false)
scatter!(df.age[P], df.salary[P], c=:red, m=:xcross, ms=7)
contour!(range(18, 60, step=0.1), range(40_000, 180_000, step=1.0), f, levels=[0.5])