Reference
Contents
Index
RegularizedProblems.FirstOrderModelRegularizedProblems.FirstOrderNLSModelRegularizedProblems.bpdn_modelRegularizedProblems.fh_model
RegularizedProblems.FirstOrderModel — Typemodel = FirstOrderModel(f, ∇f!; name = "first-order model")A simple subtype of AbstractNLPModel to represent a smooth objective.
Arguments
f :: F <: Function: a function such thatf(x)returns the objective value atx;∇f! :: G <: Function: a function such that∇f!(g, x)stores the gradient of the objective atxing.
RegularizedProblems.FirstOrderNLSModel — Typemodel = FirstOrderNLSModel(r!, jv!, jtv!; name = "first-order NLS model")A simple subtype of AbstractNLSModel to represent a nonlinear least-squares problem with a smooth residual.
Arguments
r! :: R <: Function: a function such thatr!(y, x)stores the residual atxiny;jv! :: J <: Function: a function such thatjv!(u, x, v)stores the product between the residual Jacobian atxand the vectorvinu;jtv! :: Jt <: Function: a function such thatjtv!(u, x, v)stores the product between the transpose of the residual Jacobian atxand the vectorvinu.
RegularizedProblems.bpdn_model — Methodmodel, nls_model, sol = bpdn_model(args...)
model, nls_model, sol = bpdn_model(compound = 1, args...)Return an instance of an NLPModel and an instance of an NLSModel representing the same basis-pursuit denoise problem, i.e., the under-determined linear least-squares objective
½ ‖Ax - b‖₂²,
where A has orthonormal rows and b = A * x̄ + ϵ, x̄ is sparse and ϵ is a noise vector following a normal distribution with mean zero and standard deviation σ.
Arguments
m :: Int: the number of rows of An :: Int: the number of columns of A (withn≥m)k :: Int: the number of nonzero elements in x̄noise :: Float64: noise standard deviation σ (default: 0.01).
The second form calls the first form with arguments
m = 200 * compound
n = 512 * compound
k = 10 * compoundReturn Value
An instance of a FirstOrderModel and of a FirstOrderNLSModel that represent the same basis-pursuit denoise problem, and the exact solution x̄.
RegularizedProblems.fh_model — Methodfh_model(; kwargs...)Return an instance of an NLPModel and an instance of an NLSModel representing the same Fitzhugh-Nagumo problem, i.e., the over-determined nonlinear least-squares objective
½ ‖F(x)‖₂²,
where F: ℝ⁵ → ℝ²⁰² represents the fitting error between a simulation of the Fitzhugh-Nagumo model with parameters x and a simulation of the Van der Pol oscillator with fixed, but unknown, parameters.
Keyword Arguments
All keyword arguments are passed directly to the ADNLPModel (or ADNLSModel) constructure, e.g., to set the automatic differentiation backend.
Return Value
An instance of an ADNLPModel that represents the Fitzhugh-Nagumo problem, an instance of an ADNLSModel that represents the same problem, and the exact solution.