Reference
Contents
Index
RegularizedProblems.FirstOrderModel
RegularizedProblems.FirstOrderNLSModel
RegularizedProblems.bpdn_model
RegularizedProblems.fh_model
RegularizedProblems.FirstOrderModel
— Typemodel = FirstOrderModel(f, ∇f!; name = "first-order model")
A simple subtype of AbstractNLPModel
to represent a smooth objective.
Arguments
f :: F <: Function
: a function such thatf(x)
returns the objective value atx
;∇f! :: G <: Function
: a function such that∇f!(g, x)
stores the gradient of the objective atx
ing
.
RegularizedProblems.FirstOrderNLSModel
— Typemodel = FirstOrderNLSModel(r!, jv!, jtv!; name = "first-order NLS model")
A simple subtype of AbstractNLSModel
to represent a nonlinear least-squares problem with a smooth residual.
Arguments
r! :: R <: Function
: a function such thatr!(y, x)
stores the residual atx
iny
;jv! :: J <: Function
: a function such thatjv!(u, x, v)
stores the product between the residual Jacobian atx
and the vectorv
inu
;jtv! :: Jt <: Function
: a function such thatjtv!(u, x, v)
stores the product between the transpose of the residual Jacobian atx
and the vectorv
inu
.
RegularizedProblems.bpdn_model
— Methodmodel, nls_model, sol = bpdn_model(args...)
model, nls_model, sol = bpdn_model(compound = 1, args...)
Return an instance of an NLPModel
and an instance of an NLSModel
representing the same basis-pursuit denoise problem, i.e., the under-determined linear least-squares objective
½ ‖Ax - b‖₂²,
where A has orthonormal rows and b = A * x̄ + ϵ, x̄ is sparse and ϵ is a noise vector following a normal distribution with mean zero and standard deviation σ.
Arguments
m :: Int
: the number of rows of An :: Int
: the number of columns of A (withn
≥m
)k :: Int
: the number of nonzero elements in x̄noise :: Float64
: noise standard deviation σ (default: 0.01).
The second form calls the first form with arguments
m = 200 * compound
n = 512 * compound
k = 10 * compound
Return Value
An instance of a FirstOrderModel
and of a FirstOrderNLSModel
that represent the same basis-pursuit denoise problem, and the exact solution x̄.
RegularizedProblems.fh_model
— Methodfh_model(; kwargs...)
Return an instance of an NLPModel
and an instance of an NLSModel
representing the same Fitzhugh-Nagumo problem, i.e., the over-determined nonlinear least-squares objective
½ ‖F(x)‖₂²,
where F: ℝ⁵ → ℝ²⁰² represents the fitting error between a simulation of the Fitzhugh-Nagumo model with parameters x and a simulation of the Van der Pol oscillator with fixed, but unknown, parameters.
Keyword Arguments
All keyword arguments are passed directly to the ADNLPModel
(or ADNLSModel
) constructure, e.g., to set the automatic differentiation backend.
Return Value
An instance of an ADNLPModel
that represents the Fitzhugh-Nagumo problem, an instance of an ADNLSModel
that represents the same problem, and the exact solution.